12.3 Natural Logarithm

Transforming the dependent and/or independent variables using the natural logarithm has some important and useful interpretations. Consider the following simple consumption equation in which both variables are in logarithmic form: \[ln(consumption)=\beta_0+\beta_1 \cdot \ln(income)+\epsilon\] In this case, \(\beta_1\) is the elasticity of consumption with respect to income, i.e., a 1% increase in income leads to a \(\beta_1 \cdot 1\%\) increase in consumption. For example, if \(\beta_1=0.4\), then a 1% increase in income will rise consumption by 0.4%. Note that the percentage increase is only an approximation for small changes.

Dep. Var. Indep. Var Interpretation
\(y\) \(x\) 1 dollar change in \(x\) changes y by \(\hat{\beta}\) dollars
\(\ln(y)\) \(x\) 1 dollar change in \(x\) changes y by 100 \(\times \hat{\beta}\) percent
\(\ln(y)\) \(\ln(x)\) 1 percent change in \(x\) changes y by \(\hat{\beta}\) percent
\(y\) \(\ln(x)\) 1 percent change in \(x\) changes y by \(\hat{\beta}/100\) dollars
bhat = lm(log(total)~yards+att+exp+draft1+veteran+changeteam+pbowlever,data=nfl)
summary(bhat)
## 
## Call:
## lm(formula = log(total) ~ yards + att + exp + draft1 + veteran + 
##     changeteam + pbowlever, data = nfl)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4899 -0.4998 -0.0801  0.4554  3.1959 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.9289322  0.0767846 -12.098  < 2e-16 ***
## yards        0.0003566  0.0001411   2.527 0.011783 *  
## att          0.0003927  0.0009657   0.407 0.684408    
## exp          0.0108812  0.0160213   0.679 0.497312    
## draft1       0.8876564  0.1132374   7.839 2.30e-14 ***
## veteran      0.6735244  0.1144567   5.885 6.88e-09 ***
## changeteam  -0.3095919  0.0893125  -3.466 0.000568 ***
## pbowlever    0.4093324  0.0936078   4.373 1.46e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7909 on 560 degrees of freedom
##   (441 observations deleted due to missingness)
## Multiple R-squared:   0.55,  Adjusted R-squared:  0.5444 
## F-statistic:  97.8 on 7 and 560 DF,  p-value: < 2.2e-16