12.4 Functional Form

To model non-linear relationships, an independent variable can be transformed by squaring it. For example, consider the relationship between income and food expenditure. The regular OLS assumes a linear relationship in the sense that an increase in income always leads to a proportional increase in food expenditure. In realty, there is likely a flattening out of food expenditure for high incomes because only so much money can be spent on food.

bhat = lm(log(total)~yards+att+exp+exp2+draft1+veteran+changeteam+pbowlever,data=nfl)
summary(bhat)
## 
## Call:
## lm(formula = log(total) ~ yards + att + exp + exp2 + draft1 + 
##     veteran + changeteam + pbowlever, data = nfl)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4477 -0.5010 -0.0807  0.4452  3.1638 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.0270821  0.1228294  -8.362 4.93e-16 ***
## yards        0.0003353  0.0001426   2.351 0.019087 *  
## att          0.0005137  0.0009728   0.528 0.597691    
## exp          0.0702541  0.0601679   1.168 0.243452    
## exp2        -0.0037576  0.0036704  -1.024 0.306398    
## draft1       0.8910570  0.1132812   7.866 1.90e-14 ***
## veteran      0.5752784  0.1493617   3.852 0.000131 ***
## changeteam  -0.3221519  0.0901474  -3.574 0.000383 ***
## pbowlever    0.4158535  0.0938203   4.432 1.12e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7909 on 559 degrees of freedom
##   (441 observations deleted due to missingness)
## Multiple R-squared:  0.5509, Adjusted R-squared:  0.5445 
## F-statistic: 85.71 on 8 and 559 DF,  p-value: < 2.2e-16